Enate — Custom Card
Infroduction and Capabilities

Table of Contents

INEFOAUCTION .ttt ettt e sttt s bt e e s bt e e be e e s abeesbe e e sabeesabeesaneeesaneeesseeas 3
LOU1 o] o [6T o IO TSP PP O PP 4
Creating CuSTOM Data FIBIAS......ciiiiiiiee ettt e e st e e et e e e e ab e e e e eaaeeeesntaeeeennraeeas 4
(O T AT aY - GIT L] o] oo I O] o IR 6
Standard and CUSTOMIZEA CArdScocveeeiuiieiiee ettt e sb e s bt e e sab e s b e e eneeesareeenees 8
Y [e e O [o E OO TP P ST U VPR PRRPN 8
CUSTOMIZEA CArASeeieiiieiiie ettt ettt et e et sar e st e e bt e e s bt e e ae e e sareesseeesabeesseeesnseesaneeesaneenns 10
How to Customize @ standard Card..........ccoeeiierienienie ettt s nee e 10
About Customised Card HTIML.....ccceiiiiiiiiiieieeieeee sttt sttt e sbe e s s e 13
About Customised Card TYPESCHIPL c.ccuviiei et e ettt ertre e e eere e e e seaba e e e senraeeesnntaeeeeans 13
ADOUL CUSEOMISEA CArd CSS....ooiiieiiiieiiee ettt ettt et e et esb e e st e e sabeesbeeesabeesabeesaneeesareenas 14
SEANAAIA EVENTS «..eeiiieeeiie ettt ettt ettt s e e it e e st e e e sbb e e sabeesbeeesabeesbeeesnbeesneeesaneeas 14
Standard or CUSTOMIZEA CArd?........oiiiiiiiiieiiee ettt ettt e et e s bt e e ab e e sbeeesneeesareeeas 14
Custom Card CUSTOMISATION ..ecueiiuiiiiiiiietee ettt sttt sbe e sheesate s e e b e e beesneesmees 15
CUSTOM Card Capabilitiescccccuuieeeeieie e e e e e et re e e e sabae e e e abte e e e abtee e e nreeeeeeanees 15
B = U oo =Y LI O o LR 15
(@o Y0y i T={U I Y [To F=1 d o o [PPSR 15
Tala=Y o= Y [T o T O o PR 18
(WoF o [1aY - o1l e o F: [VAN o T =T PR 18
Updating third-party data ..o ettt e e et e e e e are e e e enaae e e snnaee s 18
CONCIUSTON ..ttt ettt s h e s at e st e e bt e bt e sb e e s ae e s at e et e e bt e beesbeesaeesabeeabeeabeesbeenneeenees 19

$ ecnate

Page 2 of 19

Enate Work Allocation

Infroduction

Enate Work Manager is the face of Enate, and is primary application used to process work-items in
day to day activities. Though Work Manager is designed to be flexible and easy to for end users, it
cannot cater for every need that business throws at it. One of the common requirements of many
business processes is the ability to capture Custom Data in Work Manager.

Custom Cards can be added to Tickets, Cases & Actions to capture bespoke information (Custom Data)
on these work items as they run through process. The information is displayable via Custom Cards.
Cards can be set to display in the main section of the work item, and as a section of the side panel on
the right side of the screens.

Custom cards are the configurable Work Manager sections which are displayed in Case, Ticket or
Action screens. Custom cards can be created in Enate Builder and made to show in Work Manager.

These cards are designed with HTML, TypeScript and CSS.

An example Custom Card being displayed in Main and Side Section.

$ ecnate

Page 3 of 19

l.) Enate v2010,1 x [- B
&« C Y @ localhost/GK LOCAL V2019 2/#/app L

Q Guru
A Home @ Queues ‘ & Gururgja Karantha 8 2179837 - Invoice Processing | 217389-T - No Title 2179917 - Invoice Processing -}
Invoice Processing Due: 01/01/0001 1200 am O tl‘w“‘:"""‘ e &2 »
Note Email £ Start Case Split 8 v
! R i @ I Progress
Comms Timeline 1 SeachAcuvites (¥ (9/11) A
> = Ticket was created 08/08/2019 6:18 pm and last updated by
’” w, | Gururaja Karantha o0 08/08/2019 6:20 pim.
Invoice Details ~
-
e (No Queue Set) v
Invoice ID Invoice Date
Unbrella Corporstion » Umbrells Global » Globsl Service » Ticket
&)
Currency Descript
@ Contacts v
Urursja Karsnths is tsgged as Requester, Primary Contact Subject
Client Name BrokerName ~
Additional Info ~
Ticket Number
N 1]
v

Custom Card

There are three steps involved in configuring Custom Card to display on Ticket, Case & Action screens:

Creating Custom Data Fields

Creating Custom Cards to show these Data Fields / other content.
Linking Custom Cards to specific Case, Ticket & Action instances.
Viewing and Testing the Custom Card in Work Manager.

el

Creating Custom Data Fields

The first step to create and use Custom Card is to be ready with Custom Data fields that we need to
capture. To create custom data fields, access this section from the Custom Data Fields link in the
toolbar:

This will bring you to a list of all Custom Data fields (including tables of fields). This list can be filtered
by field name.

P enate

Page 4 of 19

©

All Fielgs and Tables O aco™ed) Add Table

BPpes il

BOpTTy

Broleey Foame

Tt Ty

Comment 1o Brokey f et
[sendd = bt
Deeid 5 Tos Tt Wil

DC Dtz Be=

D iy Rt

DC Tazic

Tipe Die=scriptiom

Lerg le

Lo Tt This Auharisarion bype for ...
Lorg Test

Tt

Loy Toewt: A cescripticn of the payral| ...
Lerg fie

Lewg Tewe

List

g Teal The Ficker Ty

Long T

L

Lowng Tow: Haralsa ong Seld

Lerg Fext desnphon here

Ny Taimt Crasesigtian S D
Tadie Herels 2 test tobie crested ..

= - | (=] -3 Eamgl Saram =

Saarch o a

Creating a Field: Click the ‘Add Field’ link at the top of the screen to begin. This will bring up a popup
to define the field data. (For existing fields, click on the field to bring up this popup for editing).

Internal Marmea

Description

Create New Data Field

Aod Field Mame

AddFieldMame

here s a descrption

Long Text

You can set the following field-level settings here:

Attribute
Name

Description
Name The field name

Notes ‘

Internal Name

The name by which the field
should be referenced on Cards

The system will autogenerate
this name as you type (a copy of
the field name with spaces

P enate

Page 5 of 19

removed). This Internal Name
should be wused in any
subsequent Custom Card HTML
/ TypeScript references.

Description A description for the field

Type The underlying data type for
the field, e.g. long text / date
time etc.

The following Types of fields are supported:

Type Description

Checkbox Boolean marker

Date & Time Stores both the date & time component.

Date Only Stores only the date component

Decimal Number e.g. 3.2

List A dropdown list. If you select this type, you can manually enter a

list of available dropdown items along with the field. This supports
copy / pasting of tabular information from e.g. spreadsheets.

Multi-level List A dropdown list with multiple levels (up to 3 levels supported).
Long Text Text fields of over 255 characters.

Short Text Text field limited to 255 characters.

Whole Number eg. 4

Creating Custom Card
After creating all the Data Fields needed by your Custom Card you are ready to proceed to the next
step which is to create the Custom Card. To Create a custom card which can use the custom data that

you previously created, access this section from the Custom Cards link in the toolbar:

[
8 B © xa

Custom Cards i

And Select the Type of Custom Card to create. There are two types of Custom Cards that can be
created. One is Work Manager Card and other being Self Service Card. Work Manager cards are
custom cards which will be displayed in Work Manager app and Self-Service Cards are cards which will
be displayed in Self Service app.

In this document we mainly talk about Work Manager cards but the concepts and steps are identical
to Self Service Card as well.

P enate

Page 6 of 19

Enate v2019.1 » +
)

&« C Y @ localhost/GK_LOCAL ¥2019_2/builder/index.htmk#!/customcards

®) Builder

@ Add Work Manager Card €9 Add Self Service Card | &8 Import Cards &% Export Cards

Name Data Fields Description
2019.2.1 Regression card 11
2019.2.1 Side card 4
2019.4 Custom Card Created 11
60 Reg Card 4
Edit/Delete MLDD 1
First Auto gen Card in Regression Instance 11
Gen Support 4

Clicking the Add icon on the page brings up the ‘Create New Card’ (similarly the same ‘Edit’ card can
be accessed by clicking the edit icon). These will bring up the card details screen:

&« C Y @ localhost/GK_LOCAL_V2019_2/builder/index.html#!/customcards
® Builder
@ Name: Invoice Details Description: Invoice Details P
Data Fields
Added Fields Q Search. .. 2
All v
Invoice 1D - Short Text x®
Invoice Date V ~ Date and Time x
Currency v - List x
Description v ~ Short Text o
Client Name ~ ~ Short Text W
Broker Name -~ Long Text ®

P enate

Page 7 of 19

The following information can be set for a Custom Card:

Type Description

Name The card name

Description A description for the card

Customized Specifies if you want to customize the HTML, TypeScript and CSS
of the card being rendered.

Standard and Customized cards

There are two types of custom cards in Enate. One is Standard Custom Card and other being
Customized Custom Card.

Standard Cards

Standard custom cards are the cards in which we only configure the custom data that we want to
display/capture in the Work Manager. The logic related to generating the HTML and supporting
TypeScript is handled by the Work Manager.

In Standard Custom cards we just select the custom data that needs to be captured and select the
order in which these custom data need to be displayed, that’s is all we need to do. Once we provide
these information Enate Work Manager will automatically decide the component to use in Work
Manager based on the custom data type and displays it in the order that we have specified.

& C Y @ localhost/GK_LOCAL V2019_2/builder/index.html#!/customcards
® Builder
@ Name: |Invoice Details Description: | Invoice Details p Customize '
Data Fields
Added Fields Q Search... Available
All E v All
Country Ur Resigence
Invoice 1D v Shart Text x
Date of Birth
Invoice Date v ~ Date and Time x
) Date Original Documen
Currency v ~ List x
dd
Description - ~ Short Tet x
Decimal Number
Client Name v ~ Shart Text x
Broker Name . Long et x Edit/Delete MLDD

In the above example we have created a Standard Custom Card named Invoice Details. To create a
standard card, we just need to Create a card and “Not Customize” it. Clicking on the Customized
checkbox converts a standard card to customized card.

P enate

Page 8 of 19

After giving the card name one needs to select the custom data that he needs to capture in Work
Manager. After adding the fields into the Added Fields section, rearrange the fields in the order that
it needs to be displayed in Work Manager. Use the Up and Down buttons to order the data fields.
After finishing the ordering save the card using the save button.

Once the card is created user must link it with Ticket, Case and Action that he needs to display it. After
linking the card one can see the card being rendered in Work Manager like this.

An Example card showing in Main-Section

< C 1t @ localhost/GK_LOCAL W2019_2/#/app
o e Peopie ek e And commanie o _
A Home & Gururaja Karantha 217988-T - Invoice Processing 217989-T - No Title B 217991-T - Invoice Processing = Queues

&=l Invoice Processing

[J Note &4 Email E= Start Case O Split B -

Comms Timeline QL Search Activities Y (9/11) ~

| Invoice Details I ~

Invoice ID Invoice Date

S
Currency Description
Client Name Broker Name

An example card showing in Side-Section

! Gururaja Karantha w
[+
) . Not Assigned ~
Due: 01/01/0001 12:00 am O Assignee © & »
l Gururaja Karantha on 08/08/2019 6:20 pm. I
== (No Queue Set) ~
e

Umbrella Corporation = Umbrella Global = Global Service = Ticket

@ Contacts v
Gururaja Karantha is tagged as Requester, Primary Contact, Subject

a o
Additional Info ~

Ticket Number

0

Salesperson

P enate

Page 9 of 19

If you look at the above example the Custom Card has automatically picked the right component to
display based on the data type of Custom Data that we have added. For example, in case of List View
data field ‘Currency’ the custom card has automatically picked right component ‘HTML Dropdown’ to
show the available options and render them as well. Enate has pre-defined components for all the
data field types we can create in Data Field section.

A standard card displays the right component for all the fields selected with value bound to the same
field in Packet object. In all a standard card automatically takes care of showing and saving custom
data for end users.

Customized Cards

Enate always recommends using standard cards over customized cards as standard cards are lot more
safe when compare to customized cards, but there will be cases where in we need to add extra
business logic to the custom card or change the appearance of the cards, in those kinds of cases you
can customize your existing cards and add extra logic using TypeScript code or change the appearance
of your card by writing your own HTML. Any standard card when customized gives us the ability to
write our own HTML, TypeScript and CSS.

Users should customize a card only when you are sure that the standard card does not meet the
requirement and the customer is ready to take the risk of writing and maintaining custom HTML and
TypeScript code.

How to Customize a standard card
To customize a card first create a standard card and save it. After saving the standard card click on the
customize checkbox to customize the standard card and see the HTML, TypeScript and CSS code.

In the example below we will be converting our previous standard card “Invoice Details” to be a
customized card.

o

P enate

Page 10 of 19

After this click on he Agree button to continue and create the customized -card

19_2/builder/index.html#!/customcards

Warning A

Editing generated code or submitting bespoke code may result in exceptions which could
void your warranty

You can revert back to the original generated code at any point by un-checking the

Customized check-baox.

After this you will get to see the HTML, TypeScript and CSS of the card

® Name: Invoice Details Description: Invoice

Data Fields HTML ™ Typescript * CsSs~

Added Fields Q Search...

All

After you customize the card you can see the actual HTML, TypeScript and CSS that Work Manager
was using to render the card and change it according to your need.

P enate

Page 11 of 19

HTML Code section that the card was using, allowed for modification by users.

& C } @ localhost/GK LOCAL V2019 2/builder/index.html#!/customcards
Builder
@ Name: Invoice Details Description: Invoice Details Customized ¥/

DataFields ~ HTML Typescript CSS

1 gdiv *ngIf="!IsExpanded"d
2 <div class="list-group d-flex flex-row flex-wrap">
3 <div class="list-group-item list-group-item-action c-pointer” (click)="Toggle()" [ngClass]="{'w-5&': Option.Card.IskorkManagerMain}">
4 «div class="d-flex w-18@ justify-content-between™>
5 <h6 class="mb-1" style="margin-right:26px">Invoice ID</h&>
6 {{Packet.DataFields["InvoiceId"] | dpDataFieldFormat: DataDictionaryDataTypes.ShortText}}
7 <fdiv>
8 </div>
] <div class="list-group-item list-group-item-action c-pointer” (click)="Toggle()" [ngClass]="{'w-5&': Option.Card.IskorkManagerMain}">
18 <div class="d-flex w-10@ justify-content-between">
11 <h6 class="mb-1" style="margin-right:26px">Invoice Date</h&>
12 {{Packet.DataFields["InvoiceDate"] | dpDataFieldFormat: DataDicticnaryDataTypes.DatsAndTime}}
13 <fdiv>
14 </div>
15 <div class="list-group-item list-group-item-action c-pointer” (click)="Toggle()" [ngClass]="{'w-5@': Option.Card.IsWorkManagerMain}">
16 <div class="d-flex w-18@ justify-content-between">
17 <h6 class="mb-1" style="margin-right:26px">Currency</h6>
18 «{{Packet.DataFields["Currency”] | dpDataFieldFormat: DataDictionaryDataTypes.list}}
19 <fdiv>
20 </div>
21 <div class="list-group-item list-group-item-action c-pointer” (click)="Toggle()" [ngClass]="{'w-5@': Option.Card.IsWorkManagerMain}">
22 <div class="d-flex w-18@ justify-content-between">
23 <h6 class="mb-1" style="margin-right:26px">Description</hé>
24 {{Packet.DataFields["Description™] | dpDataFieldFormat: DataDictionaryDataTypes.ShortText}}
25 </div>
26 </div>
27 <div class="list-group-item list-group-item-action c-pointer” (click)="Toggle()" [ngClass]="{'w-3@': Option.Card.IskWorkManagerMain}">
28 «div class="d-flex w-18@ justify-content-between™>

TypeScript section that the card was using, allowed for modification by users.

& C Y @ localhost/GK_LOCAL V2019_2/builder/indexhtm#!/customcards

) Builder

® MName: Invoice Details Description: Invoice Details . Customized ¥/

Data Fields HTML Typescript Css

CommonModule } from "@angular/common”;
import { NgModule, Component, Injector, Input } from “@angular/core”;

import FormsModule, ReactiveFormsModule } from "@angular/forms”;

1 {

2 {

3 {

4 import { HttpClientModule, HttpClient } from ”@angular/common/http”;
5 import { NgbModule } from ”@ng-bootstrap/ng-bootstrap”;

6 {

7 {

8

]

import

import { DataDictionaryDataTypes, CustomCardDisplaySection } from “@dal”;

import WorkItemvalidator, ICardOption, CaseFlowPacketForUI } from "@displayPacketObjects”;
import { CustomCardModule } from "@customCardModule”;
@Component ({

18 selector: "invoicedetails-component”,

11 template: §template,
12 styles: fstyle

13 h

14 export class InvoiceDetailsComponent {

15

16 //SYSTEM PROPERITES BEGINS

17 DataDictionaryDataTypes: typeof DataDictionaryDataTypes = DataDictionaryDataTypes;
18 CustomCardDisplaySection: typeof CustomCardDisplaySection = CustomCardDisplaySection;
19 @Input('option’) Option: ICardOption;

28 get Packet(): CaseFlowPacketForUT {

21 return this.Option && <any»this.Option.Packet;

22

23 get IsExpanded(): boolean {

24 return (this.Option ? this.Option.Card.Expand === true : false);

25 }

26 //SYSTEM PROPERLITES ENDS

27

28 constructor() {

29 ¥

P enate

Page 12 of 19

CSS section that the card was using, allowed for modification by users.

&« C 1Y @ localhost/GK_LOCAL V2019_2/builder/index htmk#!/customcards
$) Builder
@® Name:| Invoice Details Description: | Invoice Details p Customized ¥

Data Fields HTML Typescript CS3

1 .table-group {

2 overflow-x: auto;

3}

4

5 .table-group .form-control {
[min-width: 18@px !important;
7}

3

] .table-group table {

18 width: 1@0%;

1}

12

13 .table-group table th {

14 font-weight: normal;

15}

16

17 .table-group table td:not(.ct-delete), .table-group table thinot(.ct-deletes) {

18 vertical-zlign: top;
19 padding-right: 15px;
28 white-space: nowrap;
21}

22
23 .table-group table td.ct-delete, .table-group table th.ct-delete {

24 text-align: center;
25 padding-bottom: 15px;
26 width: sepx;

27 min-width: Sepx;

About Customised Card HTML

When we customize a card Enate provided the HTML that it was using to render that card. This HTML
tab will show the Labels and Components that it was using to render the Data Fields that the user had
selected. Users can change the HTML to their needs in the HTML tab.

Users can change the HTML to change the appearance of the Card like changing the colour, label name
or the display layout etc. Or write completely new sections of HTML and use native HTML elements as
well.

But it is always advised to use Enate’s components to capture and display Custom Data. Enate’s
components starts with en8 prefix. Below given are some of the Enate’s components.

<en8-short-text>
<en8-date-time>

<en8-multi-level-select>

About Customised Card TypeScript

When we customize a card Enate provided the TypeScript that it was using to render the standard
card. Typescript is the backbone of a custom card, A TypeScript component is what gules the HTML,
Packet Data and CSS all together to render the card.

D enate

Page 13 of 19

Users should only add functions and properties to the TypeScript code they should never change the
default code given by Enate.

Some of the common things that can be done in TypeScript is

e Perform validation on the data fields in the custom card.

e Provide information toast about the card data

e Red packet data and provide default values to the custom card contents.
e Respond to the common events provided by Work Manager.

About Customised Card CSS$
When we customize a card Enate provided the places holder for you to put your custom CSS. Users
are free to add the CSS that they will be using in card HTML.

Standard Events

When writing custom card code, one usually wants the card to react to some of the common events
that happen in the screen. Enate provides these below standard events that custom card developers
can utilize.

e StatusChanged -Fired when the Status of the packet gets changed.

e CategoryChanged - Fired when the Category is changed.

e OperationChanged - Fired when Packet operations tab gets changed.
e ContactModified - Fired when Contacts are either added or removed.
e FilesModified - Fired when Files are either added or removed.

Standard or Customized card?

One question that every user has is, should | use a Standard Card or Customized card or when should
| customize a card. There is no easy answer to the above but below we list the advantages and
disadvantages of both Standard and Customized cards.

Below we list the advantages of Standard card over customized card.

1. HTML, TypeScript is internal to Enate - In Standard cards the HTML, TypeScript and CSS is
maintained by Enate and it is regularly update by for bug fixes, browsers support and other
performance optimizations.

2. Localization - Localization is supported by Standard Card whereas Customized cards are
generated only for English language as of now.

3. Enate’s breaking changes - Breaking Changes by Enate is automatically handled by Enate as
we maintain the HTML rendering logic internally.

4. Angular’s breaking changes — Enate uses Angular as the Web technology to render the Work
Manager website. And Angular which is developed by Google can introduce breaking
changes which might make the TypeScript code written in Custom cards to break. These
breaking changes introduced by Angular has be taken care by custom card developers in
case of Customized card. Whereas with standard cards Enate will modify the card to cater
for breaking change by Angular and it would be a seamless upgrade.

® enate

Page 14 of 19

When it comes to customized cards the biggest advantage is the flexibility to write custom code and
HTML, with this the possibilities are endless. But this also brings the disadvantage of maintaining the
code.

Keeping in mid these above advantages/disadvantages it is always advised to use Standard Cards, if
the feature is missing in standard card please raise a request for the same.

Custom Card Customisation

This section assumes that the reader is well versed with the usage of Custom Cards in Enate and knows
HTML, TypeScript and CSS to further customise Enate’s auto generated cards.

Custom Card Capabilities

Custom cards are mainly built to capture custom data in Enate. Custom Cards can be added to Tickets,
Cases & Actions to capture bespoke information (Custom Data) on these work items as they run
through process.

Coming to the types of custom cards, we can broadly classify them in to two categories

1. Data Update Cards
2. Integration Cards

Data Update Cards

A data update card is a custom card built solely to update data in Enate. These cards mainly display
defined custom data and allow the users to update them using the basic controls like Text box, drop
down etc.

In Data Update cards there are two flavours

1. Autogenerated cards
2. Customized cards

Autogenerated cards are those, which display the custom data by automatically generating the HTML
layout in the backend.

Customized cards are those where in users change/modify the autogenerated HTML/TypeScript to
add their own functionally for example configuring validations to custom data.

Configure Validation
This section explains and provides sample code for configuring validations for custom data.

Typescript is the backbone of a custom card, A TypeScript component is what gules the HTML, Packet
Data and CSS all together to render the card.

When a card is customized, Enate by default provides the TypeScript that it was using to render the
standard card and users should only add custom functions within the “//YOUR CUSTOM CODE BEGINS
and //YOUR CUSTOM CODE ENDS” section and do not change the default rendered code.

$ ecnate

Page 15 of 19

Below is a sample example where you can see there are two custom data fields “Software Change”
which is of data type “Short Text and “Fund Code” which is of data type “List” and we will add
validations messages and make these custom data fields mandatory.

To make both of the fields mandatory, | have written the “CustomValidations” function within the
export class Demo component and called the function within “ngOnInIT()” function.

Please Note:

1. For ease of code maintenance we have first defined the function and called the function within
“ngOnInIT()” but alternatively you can write the entire validations within the “ngOnInIT()” itself.
2. Data field name to use in typescript will always be the safe name of the data field.

export class DemoComponent {
//SYSTEM PROPERITES BEGINS
DataDictionaryDataTypes: typeof DataDictionaryDataTypes = DataDictionaryDataTypes;
CustomCardDisplaySection: typeof CustomCardDisplaySection = CustomCardDisplaySection;
@Input('option') Option: ICardOption;
get Packet(): CaseFlowPacketForUI {
return this.Option && <any>this.Option.Packet;

}
get IsExpanded(): boolean {

return (this.Option ? this.Option.Card.Expand === true : false);
}

//SYSTEM PROPERITES ENDS

constructor() {

}

ngonInit() {
//YOUR CUSTOM CODE BEGINS
this.Customvalidations();
//YOUR CUSTOM CODE ENDS

}
CustomValidations() {
this.Option.Card.Validators.push((packet: CasePacketForUI, cardOptions: ICardOption) => {
const errors: string[] = [];
if (!this.Packet.DataFields.SoftwareChange) {
errors.push("Please provide Software Change Value");

if (!this.Packet.DataFields.FundCode) {
errors.push("Please select Fund Code Value");

return WorkItemValidator.ERRORS(<CardForUI>cardOptions.Card, errors);

Above validation example code is standard across all custom data types with the exception to multi-
level drop down list.

Here is the sample code for multi-level drop down list.

if (!this.Packet.DataFields.FieldName || this.Packet.DataFields.FieldName.indexOf('null') l== -
1 || this.Packet.DataFields.FieldName.indexOf('Select') !== -1) {

errors.push("Your error message here ");

P enate

Page 16 of 19

Here is the Enate Default Rendered TypeScript Example:

import { CommonModule } from "@angular/common";

import { NgModule, Component, Injector, Input } from "@angular/core";

import { FormsModule, ReactiveFormsModule } from "@angular/forms";

import { HttpClientModule, HttpClient } from "@angular/common/http";

import { NgbModule } from "@ng-bootstrap/ng-bootstrap";

import { DataDictionaryDataTypes, CustomCardDisplaySection } from "@dal";

import { WorkItemValidator, ICardOption, CaseFlowPacketForUI } from "@displayPacketObjects";
import { CustomCardModule } from "@customCardModule";

@Component ({

selector: "demo-component",
template: $template,
styles: $style

D)

export class DemoComponent {

//SYSTEM PROPERITES BEGINS

DataDictionaryDataTypes: typeof DataDictionaryDataTypes = DataDictionaryDataTypes;
CustomCardDisplaySection: typeof CustomCardDisplaySection = CustomCardDisplaySection;

@Input('option') Option: ICardOption;
get Packet(): CaseFlowPacketForUI {

return this.Option && <any>this.Option.Packet;

}
get IsExpanded(): boolean {

return (this.Option ? this.Option.Card.Expand === true : false);
3

//SYSTEM PROPERITES ENDS
constructor() {

}
ngOnInit() {
//YOUR CUSTOM CODE BEGINS

//YOUR CUSTOM CODE ENDS
}

}

@NgModule({
declarations: [DemoComponent],
entryComponents: [DemoComponent],

imports: [CommonModule, FormsModule,
CustomCardModule],
providers: [HttpClient,
{

provide: "widgets",
multi: true,

ReactiveFormsModule, HttpClientModule,

useValue: [{ name: "component-demo", component: DemoComponent }]

3

)
export default class DemoModule { }

P enate

Page 17 of 19

Integration Cards
Integration cards are those wherein we write completely bespoke code in Enate’s custom cards to
integrate with third party web apps or with third party WebAPIs.

In integration cards there can to be two flavours

1. Loading third-party pages
2. Updating third-party data

Loading third party pages

In this method the Enate’s custom card will be act like a host which just loads a third-party apps web
page in an IFRAME inside the Enate. To be able to run show other systems apps in Enate the integrating
application must allow their webpage to be loaded in an IFRAME.

One of the very common examples of this is loading of Google Forms inside an Enate Custom Card.
Since Google forms properly allow loading and saving of webpages in other systems this can be very
easily achieved in Enate.

Enate Work Manager

Google Form Card

Updating third-party data

In this method the Enate’s custom card will load its own Ul but read and update data of a third-party
system using their publicly documented WebAPIs. For this method to work the third-party system
must expose well documented APIs which have a secure authentication and authorization mechanism.

The WebAPIs that Enate cards can integrate should follow industry standards and be RESTfull
WebAPIs. Also, these WebAPIs should return and update data using industry standard data exchange
format of JSON for Enate to be able to talk to it.

P enate

Page 18 of 19

Through cards we should never try to integrate with a non-documented APIs of third-party systems

Enate Work Manager

Card Talking to WebAPI

Conclusion

Custom cards are one of the most pivotal features of Enate, we will only further add more feature and
make it more versatile and Enate’s goal is provide the most user friendly experience out of the box at
the same time allowing end users to extend it as well. Custom cards are the key bits which meet that.

Thank you.

P enate

Page 19 of 19

	Introduction
	Custom Card
	Creating Custom Data Fields
	Creating Custom Card
	Standard and Customized cards
	Standard Cards
	Customized Cards
	How to Customize a standard card
	About Customised Card HTML
	About Customised Card TypeScript
	About Customised Card CSS
	Standard Events

	Standard or Customized card?
	Custom Card Customisation
	Custom Card Capabilities
	Data Update Cards
	Configure Validation

	Integration Cards
	Loading third party pages
	Updating third-party data

	Conclusion

